Search Article 
 Advanced search 
About us - Editorial board - Browse articles - Submit article - Instructions - Subscribe - Advertise - Contacts - Login 
  Users Online: 832 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size   

Browse articles
J Clin Imaging Sci 2018,  8:28

Tomosynthesis-guided core biopsy of the breast: Why and how to use it

Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston TX 77030, USA

Date of Submission13-Feb-2018
Date of Acceptance13-Mar-2018
Date of Web Publication31-Jul-2018

Correspondence Address:
Dr. Kyungmin Shin
Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe BLVD, Houston TX 77030
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jcis.JCIS_10_18

Rights and Permissions

Digital breast tomosynthesis (DBT) has become an important tool in breast imaging. It decreases the call-back rate while increasing the cancer detection rate on screening mammography and is useful for diagnostic examination of noncalcified lesions and for the evaluation of patients presenting with clinical symptoms. Management challenges and dilemmas that are encountered with abnormalities detected on DBT and lacking a sonographic correlate can now be addressed with tomosynthesis-guided core biopsy.

Keywords: Biopsy, breast, cancer, stereotactic biopsy, tomosynthesis

How to cite this article:
Shin K, Teichgraeber D, Martaindale S, Whitman GJ. Tomosynthesis-guided core biopsy of the breast: Why and how to use it. J Clin Imaging Sci 2018;8:28

How to cite this URL:
Shin K, Teichgraeber D, Martaindale S, Whitman GJ. Tomosynthesis-guided core biopsy of the breast: Why and how to use it. J Clin Imaging Sci [serial online] 2018 [cited 2019 Feb 16];8:28. Available from:

   Introduction Top

Digital mammography remains the screening modality of choice for the detection of breast cancer in women over the age of 40 years. With continued advances in technology, multiple studies have demonstrated that compared with digital mammography alone, digital mammography plus the recently developed technique of digital breast tomosynthesis (DBT) significantly increases the cancer detection rate while decreasing the call-back rate.[1],[2],[3],[4],[5],[6],[7] Following the 2011 US Food and Drug Administration approval of the use of DBT in combination with standard digital mammography for breast cancer screening and the recent publication of the current procedural terminology code for the use of DBT as a diagnostic imaging modality, the implementation of DBT in clinical practice as a screening and diagnostic tool continues to grow.[8] With increasing use of DBT in clinical practice, management challenges related to noncalcified DBT-detected abnormalities without a sonographic correlate are being encountered more frequently. Here, we discuss the benefits and challenges of tomosynthesis-guided core biopsy of the breast and review the steps in the procedure.

   Management of Digital Breast Tomosynthesis-Detected Abnormalities Without a Sonographic Correlate Top

The initial step in the workup of an abnormality detected on DBT should be ultrasonography to look for a sonographic correlate. If a sonographic correlate is seen, management of the abnormality is similar, if not identical, to management of an abnormality seen on conventional two-dimensional (2D) digital mammography with a sonographic correlate. However, if no sonographic correlate is seen, the question of how to manage the abnormality arises.

When DBT was first introduced into clinical practice, tomosynthesis-guided biopsy capability was not available, and for noncalcified abnormalities without a sonographic correlate, tomosynthesis-guided wire localization was performed before surgical excisional biopsy. However, surgical excisional biopsy is more invasive and costly than conventional percutaneous image-guided core biopsy. Furthermore, if pathologic examination of the surgical excisional biopsy specimen shows malignancy, the patient may require additional imaging for proper staging and possibly additional surgery, such as re-excision for positive margins and surgical management of the axilla. These additional procedures may substantially increase treatment time and cost. The introduction of tomosynthesis-guided core biopsy technology allowed for tissue diagnosis without more invasive surgical intervention, an approach generally preferred by patients, surgeons, and radiologists.

   Benefits of Tomosynthesis-Guided Core Biopsy Top

Tomosynthesis-guided core biopsy is becoming more readily available, replacing traditional prone stereotactic biopsy in many facilities. Tomosynthesis-guided core biopsy requires initial training of the radiologists and the technologists; however, the transition is often smooth, especially when trainees are already proficient in traditional 2D mammography-guided stereotactic biopsy.

Tomosynthesis-guided core biopsy offers a number of benefits over traditional prone stereotactic biopsy. Since tomosynthesis-guided core biopsy is easily performed by trained radiologists, it allows patients with benign concordant biopsy findings to avoid unnecessary surgery. Tomosynthesis-guided core biopsy facilitates tissue diagnosis for mammographic abnormalities seen on 2D and 3D mammograms, including asymmetries, focal asymmetries, masses, architectural distortions, and calcifications. Tomosynthesis-guided core biopsy also facilitates stereotactic biopsy of noncalcified abnormalities, which is demonstrated in the case examples provided later in this article.

Tomosynthesis-guided core biopsy may also be more comfortable for patients. For tomosynthesis-guided core biopsies, the patient may be sitting or be in the right or left lateral decubitus position [Figure 1]. In our experience, this range of options has improved patient comfort, especially for patients with back pain, respiratory problems, or difficulty with prone positioning, because it allows positioning according to the patient's needs and physical limitations.
Figure 1: Patient positioning options for tomosynthesis-guided core biopsy of the breast. (a) The patient is in a lateral decubitus position with the biopsy needle positioned for a lateral to medial approach. (b) The patient is in a lateral decubitus position with the biopsy device at a 90-degree angle for an caudocranial approach. (c) The patient is in a seated position with the biopsy needle positioned for a craniocaudal approach.

Click here to view

In addition, tomosynthesis-guided core biopsy may be helpful in sampling of the very far posterior lesions that are difficult to get to with the traditional prone 2D stereotactic biopsy table. This is largely felt to be related to the loss of the table thickness of the prone table as well as the angle of the needle in the upright tomosynthesis-guided core biopsy units.

It has been reported that tomosynthesis-guided core biopsy may be faster than traditional prone stereotactic biopsy.[9],[10] Our experience suggests that the faster biopsy time is due to faster targeting of the abnormality since there is no need for 15-degree stereo pair images. Confirmation of clip placement and the biopsy site is also easier and improved with tomosynthesis-guided core biopsy, especially for noncalcified findings or when there is complete removal of the calcifications. With tomosynthesis-guided core biopsy, the final postclip placement mammograms are obtained with the same unit that is used for the biopsy. In contrast, with traditional prone stereotactic biopsy, the patient is usually transferred to another mammography unit, which is usually in a different room, for postclip placement mammography.

   Procedure for Tomosynthesis-Guided Core Biopsy Top

The basic steps in tomosynthesis-guided core biopsy are similar to those in traditional 2D mammography-guided stereotactic biopsy; the biggest difference between the two techniques is in lesion targeting. First, the biopsy approach is planned. The options are craniocaudal, caudocranial, lateral to medial, and medial to lateral, and the approach is chosen on the basis of the location of the abnormality. Then, once the patient is in position and the breast is under compression, tomosynthesis imaging of the targeted area is performed, which replaces the scout and the conventional 15-degree stereo pair images obtained for z-coordinate/depth calculation in 2D mammography-guided stereotactic biopsy. Once tomosynthesis imaging of the targeted area is complete, the abnormality is targeted on the image slice that best shows the abnormality [Figure 2]. Once the abnormality is targeted, the remaining tomosynthesis-guided core biopsy steps, including the biopsy, obtaining a specimen radiograph, and placing the biopsy clip, are identical to the steps of 2D mammography-guided stereotactic biopsy. The mammogram to confirm proper clip placement before the full-view mammograms is obtained may be performed with tomosynthesis or 2D techniques. In our experience, visualization of the biopsy cavity and clip under tomosynthesis was helpful in some cases of noncalcified abnormalities to confirm that the biopsy cavity was in the area of the abnormality; this technique was especially helpful if clip migration was suspected. Different types of targets for tomosynthesis-guided core biopsy are demonstrated in [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7]. Cine clips of craniocaudal tomosynethesis-guided targeting [Video 1] and postbiopsy clip placement [Video 2], for the same patient as figure 3, demonstrate a marker clip at the targeted site, confirming biopsy of the targeted architectural distortion. Pathology showed invasive lobular carcinoma.
Figure 2: Image of the targeting screen with coordinates and the pictorial demonstration of the coordinates (x, y, and z) for targeting.

Click here to view
Figure 3: A 56-year-old woman with architectural distortion seen on mammography without a sonographic correlate. (a-d) Craniocaudal full-field digital mammography (a) and tomosynthesis (b) views and mediolateral oblique full-field digital mammography (c) and tomosynthesis (d) views demonstrate that the finding is not well seen on two-dimensional images (a and c, solid circles) but is readily visible on tomosynthesis images (b and d, dashed circles).

Click here to view
Figure 4: A 85-year-old woman called back for additional imaging because screening mammography revealed a 0.6-cm focal asymmetry in the right breast at 12 o'clock. (a and b) Craniocaudal (a) and lateromedial (b) spot magnification views demonstrate a 0.6-cm irregular, high-density mass with indistinct margins in the right breast at 12 o'clock (dashed circles). No sonographic correlate was found, and tomosynthesis-guided core biopsy was performed. (c) Tomosynthesis image shows the targeted mass (circle). (d) Postbiopsy mammogram demonstrates the marker clip in the targeted area (arrow). Pathology result showed invasive ductal carcinoma.

Click here to view
Figure 5: A 38-year-old woman who presented for evaluation of nonfocal pain in the right breast. (a) On the craniocaudal view, only a 0.9-cm asymmetry was seen in the central right breast (circle). No sonographic correlate was found, and tomosynthesis-guided core biopsy was performed. (b) Tomosynthesis image shows the targeted lesion (circle). (c) Postbiopsy mammogram demonstrates the marker clip in the targeted area (arrow). Pathology result showed mild stromal fibrosis and focal fibroadenomatoid changes.

Click here to view
Figure 6: A 79-year-old woman who presented with a recent diagnosis of ductal carcinoma in situ in the left breast. (a and b) Craniocaudal (a) and mediolateral oblique (b) views of the right breast show a 1.6-cm focal asymmetry (circle and oval). No sonographic correlate was found, and tomosynthesis-guided core biopsy was performed. (c) Tomosynthesis image shows the targeted focal asymmetry on the craniocaudal view (circle). (d) Postbiopsy mammogram shows the marker clip (arrow). The clip had migrated 2 cm medially from the targeted focal asymmetry (circle). Pathology result showed benign fibrocystic changes.

Click here to view
Figure 7: A 55-year-old woman with a screening call-back for calcifications in the left breast. (a) Lateromedial magnification view shows new grouped fine pleomorphic calcifications in the lower inner quadrant of the left breast at 8 o'clock at middle depth (dashed circle). (b) Tomosynthesis images clearly demonstrate the calcifications (circle). (c) Specimen radiograph shows the calcifications (arrows). (d) Postbiopsy lateromedial mammogram demonstrates the marker clip in the targeted area with an associated small postbiopsy hematoma (dashed circle). Pathology result showed ductal carcinoma in situ.

Click here to view

   Challenges and Pitfalls of Tomosynthesis-Guided Core Biopsy Top

The most significant challenge with tomosynthesis-guided stereotactic biopsy is obtaining clearance, which may require quite a bit of patient cooperation because the machine has more moving parts that are present in traditional prone 2D mammography-guided stereotactic biopsy machines. However, this challenge has been addressed with newer prone tomosynthesis-guided stereotactic biopsy tables. Some patients may experience vasovagal reactions due to upright positioning, although we rarely see such reactions with proper patient coaching before the procedure. The incidence of vasovagal reactions is also diminished with the new prone 3D stereotactic biopsy table. Covering the patient's eyes with a small towel so that the biopsy needle is not visible to the patient may also reduce the risk of a vasovagal reaction.

One very important concern is that subtle faint calcifications may be difficult to visualize on the tomosynthesis targeting images, in which case the procedure may need to be converted to a 2D mammography-guided stereotactic biopsy.

   Conclusion Top

Tomosynthesis-guided stereotactic core biopsy has several benefits over traditional 2D mammography-guided stereotactic biopsy. With increased utilization of tomosynthesis for both screening and diagnostic examinations, understanding this new technology and tomosynthesis-guided biopsy techniques is important for both radiologists and technologists, which will likely replace traditional 2D mammography-guided stereotactic biopsy over time.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   References Top

Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS,et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 2014;311:2499-507.  Back to cited text no. 1
Spangler ML, Zuley ML, Sumkin JH, Abrams G, Ganott MA, Hakim C,et al. Detection and classification of calcifications on digital breast tomosynthesis and 2D digital mammography: A comparison. AJR Am J Roentgenol 2011;196:320-4.  Back to cited text no. 2
Rafferty EA, Park JM, Philpotts LE, Poplack SP, Sumkin JH, Halpern EF,et al. Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: Results of a multicenter, multireader trial. Radiology 2013;266:104-13.  Back to cited text no. 3
Rose SL, Tidwell AL, Bujnoch LJ, Kushwaha AC, Nordmann AS, Sexton R Jr.,et al. Implementation of breast tomosynthesis in a routine screening practice: An observational study. AJR Am J Roentgenol 2013;200:1401-8.  Back to cited text no. 4
Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U,et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 2013;267:47-56.  Back to cited text no. 5
Ciatto S, Houssami N, Bernardi D, Caumo F, Pellegrini M, Brunelli S,et al. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): A prospective comparison study. Lancet Oncol 2013;14:583-9.  Back to cited text no. 6
Haas BM, Kalra V, Geisel J, Raghu M, Durand M, Philpotts LE,et al. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology 2013;269:694-700.  Back to cited text no. 7
US Food and Drug Administration. Selenia Dimensions 3D System–P080003. Available from: [Last accessed on 2016 Apr 18].  Back to cited text no. 8
Schrading S, Distelmaier M, Dirrichs T, Detering S, Brolund L, Strobel K,et al. Digital breast tomosynthesis-guided vacuum-assisted breast biopsy: Initial experiences and comparison with prone stereotactic vacuum-assisted biopsy. Radiology 2015;274:654-62.  Back to cited text no. 9
Waldherr C, Berclaz G, Altermatt HJ, Cerny P, Keller P, Dietz U,et al. Tomosynthesis-guided vacuum-assisted breast biopsy: A feasibility study. Eur Radiol 2016;26:1582-9.  Back to cited text no. 10

   Authors Top

Dr. Kyungmin Shin


  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7]

This article has been cited by
1 Intervencionismo mamario guiado por imagen: ¿dónde estamos?
Luis Pina
Revista de Senología y Patología Mamaria. 2018; 31(4): 121
[Pubmed] | [DOI]


Previous article   Next article
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Management of Di...
    Benefits of Tomo...
    Procedure for To...
    Challenges and P...
    Article Figures

 Article Access Statistics
    PDF Downloaded185    
    Comments [Add]    
    Cited by others 1    

Recommend this journal